				J			D	ALIBRATION UE DATE: ary 11, 2020
	Ce	rtifa	cate				tion	
			Calibration	Certificati	on Informat	ion		
Cal. Date:	January 11, 2019 Rootsmeter S/			meter S/N:	438320	Ta:	293	°К
Operator:	Jim Tisch					Pa:	760.7	mm Hg
Calibration	Model #:	TE-5025A	Calik	brator S/N:	0005			
	[]]							1
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4090	3.2	2.00	1
	2	3	4	1	0.9980	6.4	4.00	1
	4	7	8	1	0.8450	7.8	5.00	1
	5	9	10	1	0.6990	12.6	8.00	4
				-		12.0	0.00	1
			[Data Tabula	tion			-
	Matal		$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)			_\ ΔH(Ta/Pa)	
	Vstd	Qstd	Y		Va	Qa	V V /	
	(m3) 1.0138	(x-axis) 0.7195	(y-ax 1.426	the second s	Va 0.9958	(x-axis) 0.7067	(y-axis) 0.8777	
	1.0195	1.0115	2.018		0.9916	0.9936	1.2412	-
	1.0076	1.1321	2.256		0.9897	1.1121	1.3877	
	1.0064	1.1910	2.366		0.9886	1.1699	1.4555	
	1.0012	1.4323	2.853	and the second se	0.9834	1.4069	1.7553	1
		m=	1.998	861		m=	1.25149	
	QSTD	b=	-0.008		QA	b=	-0.00543	
		r=	0.999	97		r=	0.99997	
				Calculatio	ns			
			/Pstd)(Tstd/Ta	a)	Va=	∆Vol((Pa-∆P	P)/Pa)	1
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time		
			For subsequ	ent flow ra	te calculation	ns:		
	Qstd=	$1/m\left(\sqrt{\Delta H}\right)$	Pa <u>(Tstd</u>) Pstd Ta))-b)	Qa=	$1/m \left(\sqrt{\Delta H} \right)$	l(Та/Ра))-b)	
	Standard	Conditions	1					
Tstd:	298.15			[RECA	IBRATION	
Pstd:	and the second s	mm Hg			LIS EDA rocc	mmende	nual recalibratio	on per 1009
AH: calibrat		(ey or roading (ii					Regulations Part	
		er reading (in eter reading (Reference Meth	
UULSIIE							ended Particulat	
	Ta: actual absolute temperature (°K) Pa: actual barometric pressure (mm Hg)							
Ta: actual ab			Hg)				re, 9.2.17, page	

sch Environmental, Inc. 5 South Miami Avenue

lage of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date	:	18-Oct-19
Equipment no.	:	HVS001	Calbration Due Date	:	18-Dec-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition								
Temperature, T _a		300		Kelvin	Pressure, P	a	1	017	mmHg
Orifice Transfer Standard Information									
Equipment No.		0005			1.998	61	Intercept, bc	-0.008	382
Last Calibration Date		11-Jan-1	9		(Н х	: P _a / 10	13.3 x 298 /	(T _a) ^{1/2}	
Next Calibration Date		11-Jan-2	0		=	m _c x	$(Q_{std} + b_c)$		
Calibration of TSP									
Calibration	Mar	Manometer Reading			std	Contir	uous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Rec	order, W	(W(P _a /1013.3x298/	Γ _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	X-axis		CFM)	Y-axis	
1	1.4	1.4	2.8	0.8	3404		27	26.9589	9
2	1.9	1.9	3.8	0.9	9783		31	30.9529	Э
3	2.5	2.5	5.0	1.1	1215		36	35.9452	2
4	4.1	4.1	8.2	1.4	4350		42	41.9361	1
5	4.8	4.8	9.6	1.	1.5523		47	46.9285	ō
By Linear Regression of	Y on X								
	Slope, m	=	26.6	137	Int	ercept, b	= 4.	9937	
Correlation Co	pefficient*	=	0.99	936					
Calibration	Accepted	=	Yes/ł	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :

Calibrated by

Date

Laurance Yung 18-Oct-19

:

:

Checked by Date James Chu

:

•

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	18-Oct-19
Equipment no.	:	HVS002	Calbration Due Date	: _	18-Dec-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition								
Temperature, T _a		300		Kelvin Pressure, P a			1	017 mmH	łg
Orifice Transfer Standard Information									
Equipment No.		0005			1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		(Hx	(P _a / 10	13.3 x 298 /	$(T_a)^{1/2}$	
Next Calibration Date		11-Jan-2	0		=	m_c >	$(Q_{std} + b_c)$		
Calibration of TSP									
Calibration	Manometer Reading			C	t _{std}	Contin	uous Flow	IC	
Point	H (inches of water)		(m ³	/ min.)	Rec	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /3	35.31)	
	(up)	(down)	(difference)	X-	axis	(CFM)	Y-axis	
1	2.1	2.1	4.2	1.(0283		23	22.9650	
2	2.6	2.6	5.2	1.1	1.1436		29	28.9559	
3	3.2	3.2	6.4	1.:	2683		36	35.9452	
4	3.8	3.8	7.6	1.3	3817		42	41.9361	
5	4.1	4.1	8.2	1.4	1.4350		48	47.9270	
By Linear Regression of	Y on X								
	Slope, m	=	58.9	997	Int	ercept, b =	-38	3.2849	
Correlation Co	pefficient*	=	0.99	939					
Calibration	Accepted	=	Yes/	No**					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :			
Calibrated by	:	Laurance Yung	Checked by
Date	:	18-Oct-19	Date

James Chu

:

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	СМАЗа	Calbration Date	:	18-Oct-19
Equipment no.	:	HVS012	Calbration Due Date	:	18-Dec-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition							
Temperature, T _a		300		Kelvin Pressure, P a			1	017 mmHg
Orifice Transfer Standard Information								
Equipment No.		0005			1.998	61	Intercept, bc	-0.00882
Last Calibration Date		11-Jan-1	9		(Hx	(P _a / 10	13.3 x 298 /	(T _a) ^{1/2}
Next Calibration Date		11-Jan-2	0		=	m_c y	$(Q_{std} + b_c)$	
Calibration of TSP								
Calibration	Mar	Manometer Reading			t std	Contir	uous Flow	IC
Point	H (inches of water)		(m ³	/ min.)	Rec	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.3	
	(up)	(down)	(difference)	X-axis		(CFM)	Y-axis
1	1.8	1.8	3.6	0.9	0.9523		29	28.9559
2	2.3	2.3	4.6	1.(0759		34	33.9483
3	2.7	2.7	5.4	1.1	1653	38		37.9422
4	3.3	3.3	6.6	1.2	2879		44	43.9331
5	3.7	3.7	7.4	1.3	1.3634		49	48.9255
By Linear Regression of	Y on X							
	Slope, m	=	48.0	324	Int	ercept, b =	= -17	7.4077
Correlation Co	pefficient*	=	0.99	963				
Calibration	Accepted	=	Yes/ł	No**				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
Calibrated by	:	Laurance Yung	Checked by	:	James Chu
Date	:	18-Oct-19	Date	:	18-Oct-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	18-Oct-19
Equipment no.	:	HVS004	Calbration Due Date	:	18-Dec-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		300	J	Kelvin Pressure, P a		1	1017 mmHg	
Orifice Transfer Standard Information								
Equipment No.		0005			1.998	61	Intercept, bc	-0.00882
Last Calibration Date		11-Jan-19	9		(Hx	(P _a / 10	13.3 x 298 /	'T _a) ^{1/2}
Next Calibration Date		11-Jan-20	.0		=	m _c x	$(Q_{std} + b_c)$	
Calibration of TSP								
Calibration	Mar	Manometer Reading			Q _{std}	Contin	uous Flow	IC
Point	H (inches of water)		(m ³	/ min.)	Rec	order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	Х-	-axis	(CFM)	Y-axis
1	1.3	1.3	2.6	0.8	8100		26	25.9605
2	1.8	1.8	3.6	0.9	9523		31	30.9529
3	2.6	2.6	5.2	1.1	1436		36	35.9452
4	3.2	3.2	6.4	1.:	2683		39	38.9407
5	4.1	4.1	8.2	1.4	4350		42	41.9361
By Linear Regression of `	Y on X							
	Slope, m	=	25.5	089	Int	ercept, b =	=6	.1300
Correlation Co	cefficient*	=	0.99	931				
Calibration	Accepted	=	Yes/ł	No**				

* if Correlation Coefficient < 0.990, check and recalibration again.

:

**	Delete	as	appropriate.
----	--------	----	--------------

Remarks :

Calibrated by

Date

: Laurance Yung 18-Oct-19

Checked by Date

James Chu

18-Oct-19

:

•

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5b	Calbration Date	:	18-Oct-19
Equipment no.	:	HVS010	Calbration Due Date	:	18-Dec-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient C	Condition			
Temperature, T _a		300)	Kelvin	Pressure, P	a	1	1017 mmHg
			Orifice T	ransfer Sta	andard Inform	nation		
Equipment No.	[0005		Slope, m _c	1.9986	61	Intercept, bc	-0.00882
Last Calibration Date	11-Jan-19			(Hx	: P _a / 10)13.3 x 298 /	'T _a) ^{1/2}	
Next Calibration Date	11-Jan-20		1	=	m _c	$x Q_{std} + b_c$		
				Calibratio	n of TSP			
Calibration	Mar	nometer R	eading	C	Q _{std}	Conti	nuous Flow	IC
Point	Н (і	inches of v	water)	(m ³	/ min.)	Red	corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	axis		(CFM)	Y-axis
1	1.6	1.6	3.2	0.8	8981		22	21.9665
2	2.2	2.2	4.4	1.0	0524		26	25.9605
3	2.7	2.7	5.4	1.1	1653		30	29.9544
4	3.4	3.4	6.8	1.3	3072		36	35.9452
5	4.3	4.3	8.6	1.4	4695		41	40.9376
By Linear Regression of	Y on X							
	Slope, m	=	34.24	476	Inte	ercept, b	=9	.4077
Correlation Co	cefficient*	=	0.99) 68				
Calibration	Accepted	=	Yes/	No**				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
Calibrated by	:	Laurance Yung	Checked by	:	James Chu
Date	:	18-Oct-19	Date	:	18-Oct-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1e	Calbration Date	:	18-Oct-19
Equipment no.	: _	HVS007	Calbration Due Date	:	18-Dec-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient (Condition				
Temperature, T _a		300)	Kelvin	Pressure, P	a	1	017 mmH	g
			Orifice T	ransfer Sta	Indard Inform	nation			
Equipment No.		0005			1.998	61	Intercept, bc	-0.00882	
Last Calibration Date	11-Jan-19			(H x P _a / 1013.3 x 298 / T _a) ^{1/2}					
Next Calibration Date	11-Jan-20				$= m_c \times Q_{std} + b_c$				
				Calibratio	n of TSP				
Calibration	Mar	nometer R	eading	c	t _{std}	Conti	nuous Flow	IC	
Point	Н (і	inches of	water)	(m ³	/ min.)	Red	corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35	5.31)
	(up)	(down)	(difference)	Х-	axis		(CFM)	Y-axis	
1	2.6	2.6	5.2	1.	1436		31	30.9529	
2	3.1	3.1	6.2	1.:	2484		35	34.9468	
3	3.4	3.4	6.8	1.	3072		39	38.9407	
4	4.3	4.3	8.6	1.	4695		46	45.9300	
5	4.9	4.9	9.8	1.	5684		54	53.9179	
By Linear Regression of	Y on X								
	Slope, m	=	53.0	182	Int	ercept, b	= -30).4997	
Correlation Co	pefficient*	=	0.99	924					
Calibration	Accepted	=	Yes/ł	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

: 18-Oct-19

Remarks :

Date

Calibrated by	:	Laurance Yung

Checked by

Date

: James Chu

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1w	Calbration Date	:	18-Oct-19
Equipment no.	:	HVS008	Calbration Due Date	: _	18-Dec-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

				Ambient (Condition			
Temperature, T _a		300		Kelvin	Pressure, P	a	1	I017 mmHg
			Orifice T	ransfer Sta	Indard Inform	nation		
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882
Last Calibration Date	11-Jan-19			(Hx	: P _a / 10	013.3 x 298 /	$(T_a)^{1/2}$	
Next Calibration Date	11-Jan-20				=	m _c	$x Q_{std} + b_c$	
				Calibratio	n of TSP			
Calibration	Mar	nometer R	eading	c) _{std}	Conti	nuous Flow	IC
Point	Н (і	inches of	water)	(m ³	/ min.)	Re	corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.3
	(up)	(down)	(difference)	Х-	axis		(CFM)	Y-axis
1	2.7	2.7	5.4	1.	1653		24	23.9635
2	3.3	3.3	6.6	1.:	2879		29	28.9559
3	3.8	3.8	7.6	1.3	3817		35	34.9468
4	4.3	4.3	8.6	1.	4695		40	39.9392
5	4.8	4.8	9.6	1.	5523		46	45.9300
By Linear Regression of	Y on X							
	Slope, m	=	57.0	249	Inte	ercept, b	= -43	3.4536
Correlation Co	pefficient*	=	0.99	949				
Calibration	Accepted	=	Yes/	¥0**				

* if Correlation Coefficient < 0.990, check and recalibration again.

: Laurance Yung

: 18-Oct-19

Delete as appropriate.	**	Delete	as	appropriate.
------------------------	----	--------	----	--------------

Remarks :

Date

Calibrated by

Checked by

Date

: James Chu

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道 37號利達中心 12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0222 02		Page	1 of	2
Item tested					
Description:	Sound Level Mete	r (Type 1)	Microphone	Pream	np
Manufacturer:	B & K		B & K	B & K	
Type/Model No.:	2250		4950	ZC003	32
Serial/Equipment No.:	2701778		2755097	19223	}
Adaptors used:	-		-	-	
Item submitted by					
Customer Name:	Lam Geotechnics	Limited.			
Address of Customer:	-				
Request No.:	-				
Date of receipt:	22-Feb-2019				
Date of test:	25-Feb-2019				
Reference equipment	used in the calib	ration			
Description:	Model:	Serial No.	Expiry Date:	Trace	able to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019	CIGIS	MEC
Signal generator	DS 360	33873	24-Apr-2019	CEPRI	El
Signal generator	DS 360	61227	26-Dec-2019	CEPRI	El
Ambient conditions					
Temperature:	21 ± 1 °C				
Relative humidity:	55 ± 10 %				
Air pressure:	1005 ± 5 hPa				
Test specifications					

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of <u>+</u>20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

ena Junai

Actual Measurement data are documented on worksheets.

Approved Signatory:

26-Feb-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道 3 7 號利達中心 1 2 樓

會被買竹坑姐37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0222 02

Page

2 of

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test: Self-generated noise	Subtest: A C	Status: Pass	Uncertanity (dB)	Factor
Self-generated noise		Pass		
5	С		0.3	
		Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
0.0	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

			Expanded	Coverage
Test:	Subtest	Status	Uncertanity (dB)	Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

		- End -	
Calibrated by:	EL	Checked by:	$1 \sim \gamma$
	Fong Chun Wai		Fung Chi Yip
Date:	25-Feb-2019	Date:	26-Feb-2019

The standard(s) and equipment used in the calibration are traceable to national of international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

徐合武 驗 有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0116 02		Page	1	of	2	
Item tested							
Description:	Sound Level Mete	er (Type 1)	Microphone	F	reamp		
Manufacturer:	B & K		B&K	E	3& K [']		
Type/Model No.:	2250L		4950	Z	C0032		
Serial/Equipment No.:	3002695		2940839	1	8582		
Adaptors used:	-		-	-			
Item submitted by							
Customer Name:	Lam Geotechnics	Ltd.					
Address of Customer:	-						
Request No.:	-						
Date of receipt:	16-Jan-2019						
Date of test:	17-Jan-2019						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.	Expiry Date:	т	raceat	ole to:	
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019	С	IGISME	C	
Signal generator	DS 360	33873	24-Apr-2019	С	EPREI		
Signal generator	DS 360	61227	26-Dec-2019	С	EPREI		
Ambient conditions							
Temperature:	21 ± 1 °C						
Relative humidity:	50 ± 10 %						
Air pressure:	1005 ± 5 hPa						

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Fend Junai

19-Jan-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Approved Signatory:

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

驗有限公司 瓦 SOILS & MATERIALS ENGINEERING CO., LTD.

港 黃 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

19CA0116 02

Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

CERTIFICATE OF CALIBRATION

(Continuation Page)

2 of 2

1, **Electrical Tests**

Certificate No.:

香

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
5	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

Response to associated sound calibrator

N/A

3,

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1 (- End -	0	
Calibrated by:		Checked by:	Allow	
	Fung Chi Yip		Shek Kwong Tat	
Date:	17-Jan-2019	Date:	19-Jan-2019	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0329 02		Page	1	of	2	
Item tested							
Description:	Sound Level Mete	r (Type 1)	Microphone	Pr	eamp		
Manufacturer:	B & K		B&K	В	& K .		
Type/Model No.:	2250-L		4950	ZC	0032		
Serial/Equipment No.:	2722310		2698702	13	318		
Adaptors used:	-		-	-			
Item submitted by				-			
Customer Name:	Lam Geotechnics	Ltd.					
Address of Customer:							
Request No.:	_						
Date of receipt:	29-Mar-2019						
Date of test:	02-Apr-2019						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.	Expiry Date:	Tr	aceab	le to:	
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019	CIO	GISME	C	
Signal generator	DS 360	33873	24-Apr-2019	CE	PREI		
Signal generator	DS 360	61227	26-Dec-2019	CE	PREI		
Ambient conditions							
Temperature:	21 ± 1 °C						
Relative humidity:	55 ± 10 %						
Air pressure:	1005 ± 5 hPa						
Test specifications					A.1.0 B.0. (1997)		

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Jung Fend

02-Apr-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0329 02

2 of

2

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	a.
	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

- 0	- End -	1	
EL	Checked by:	1~1	
Fong Chun Wai		Fung Chi Yip	
02-Apr-2019	Date:	02-Apr-2019	
	•	End El Checked by:	Eline Checked by:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

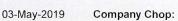
综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0425 02		Page	1 of 2
Item tested				
Description:	Sound Level Mete	r (Type 1)	Microphone	Preamp
Manufacturer:	B & K		B&K	B&K
Type/Model No.:	2250-L		4950	ZC0032
Serial/Equipment No.:	2722311		2698703	13321
Adaptors used:	-		-	-
Item submitted by				
Customer Name:	Lam Geotechnics	Ltd.		
Address of Customer:	-			
Request No.:	-			
Date of receipt:	25-Apr-2019			
Date of test:	02-May-2019			
Reference equipment	used in the calib	ration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019	CIGISMEC
Signal generator	DS 360	61227	26-Dec-2019	CEPREI
Ambient conditions				
Temperature:	22 ± 1 °C			
Relative humidity:	55 ± 10 %			
Air pressure:	1005 ± 5 hPa			
Test specifications				

- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.


Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Feng Junqi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0425 02

2 of

2

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
, ,	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
0.0	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	Λ	- End -	
Calibrated by:	1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Checked by:	Aun
Deter	Fung Chi Yip	Data	Shek Kwong Tat
Date:	Ø2-May-2019	Date:	03-May-2019

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

徐 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD. 香 港 黃 竹 坑 道 3 7 號 利 達 中 心 1 2 樓

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0314 01			Page	1	of	2	
Item tested								
Description:	Sound Level Meter	(Type 1)		Microphone				
Manufacturer:	Larson Davis		,	PCB				
Type/Model No.:	LxT1			377B02				
Serial/Equipment No.:	0003737		,	171529				
Adaptors used:	-		,	-				
Item submitted by								
Customer Name:	Lam Geotechnics L	.td.						
Address of Customer:	-	-						
Request No.:	_							
Date of receipt:	14-Mar-2019							
Date of test:	18-Mar-2019							
Reference equipment	used in the calibr	ation						
Description:	Model:	Serial No.		Expiry Date:		Traceat	ole to:	
Multi function sound calibrator	B&K 4226	2288444		23-Aug-2019		CIGISME	C	
Signal generator	DS 360	61227		26-Dec-2019		CEPREI		
Ambient conditions								
Temperature:	21 ± 1 °C							
Relative humidity:	55 ± 10 %							
Air pressure:	1005 ± 5 hPa							
Test specifications								

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Feng/Junqi

19-Mar-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

1.

19CA0314 01

2 of

Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	N/A	N/A	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

			Expanded	Coverage
Test:	Subtest	Status	Uncertanity (dB)	Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	- End -	1 1
El	Checked by:	1~~~
ong Chun Wai		Fung Chi Yig
8-Mar-2019	Date:	19-Mar-2019
	•	ong Chun Wai

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA1024 01		Page:	1 of 2
Item tested				
Description:	Acoustical Calibr	ator (Class 1)		
Manufacturer:	Larson Davis	, ,		
Type/Model No.:	CAL200			
Serial/Equipment No.:	13098			
Adaptors used:	-			
Item submitted by				
Curstomer:	Lam Geotechnics	s Limited.		
Address of Customer:	-			
Request No.:	-			
Date of receipt:	24-Oct-2019			
Date of test:	24-Oct-2019			
Reference equipment	used in the cali	bration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	03-May-2020	SCL
Preamplifier	B&K 2673	2239857	17-May-2020	CEPREI
Measuring amplifier	B&K 2610	2346941	05-Jun-2020	CEPREI
Signal generator	DS 360	33873	10-May-2020	CEPREI
Digital multi-meter	34401A	US36087050	08-May-2020	CEPREI
Audio analyzer	8903B	GB41300350	13-May-2020	CEPREI
Universal counter	53132A	MY40003662	10-May-2020	CEPREI

Temperature:	22 ± 1 °C
Relative humidity:	55 ± 10 %
Air pressure:	1000 + 5 hPa

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev D/01/03/2007

合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

19CA1024 01

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Website: www.cigismec.com

Page: 2 of 2

1, Measured Sound Pressure Level

E-mail: smec@cigismec.com

Certificate No.:

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties. (Output loughin dB to 20 ... Do)

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
_{Hz}	dB	dB	dB
1000	94.00	93.98	0.10

Sound Pressure Level Stability - Short Term Fluctuations 2,

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000) Hz			STF = 0.013	3 dB

Estimated expanded uncertainty

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

At 1000 Hz	Actual Frequency = 999.8 Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.5%
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	tan	
Calibrated by:	$1 \sim 1$	Checked by:	Auto	
	Fung Chi Yip		Shek Kwong Tat	
Date:	24-Oct-2019	Date:	26-Oct-2019	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005